Two weeks ago, Facebook opened up its Instant Articles platform to all publishers. And last week, Facebook announced that they will be updating their News Feed algorithm once again. The most recent change to their algorithm will look at predictions of whether a user in the Facebook mobile browser or on an Instant Article page will click into an article and actually read that article. Time spent viewing the article will continue to be a large factor in News Feed rankings.

When Facebook makes changes, the publishing industry reacts with questions and concerns (see, for example, here, here, or here). That said, each time we here at Chartbeat have looked at Facebook referrer traffic in response to one of these changes, we haven’t seen any major effect across our network. Here’s what the median percentage of traffic from Facebook looks like across our network so far this year:Besides the typical weekday / weekend variations, traffic from Facebook is remarkably stable. We see Facebook driving between 40-50% of traffic on mobile devices during peak weekday traffic and about 12-15% of traffic on desktop devices during peak weekday traffic (note that these numbers exclude cases in which we have no data for referrer, as is the case for dark social). Even given the two big changes that happened this month, we are actually seeing a slightly higher-than-normal amount of referral traffic! This increased traffic is on the order of 3-4% for the median (smaller if you look at the average; 1%).It is important to note that these curves show the median proportion across our network. Individual sites respond in different ways, so you may have seen your traffic rise or fall in response to one of these changes. Sitting in the newsroom, it is hard to see the forest for the trees, so to speak — we have the power of statistics on our side. But from what we continue to see, the majority of publishers are incredibly adept at responding to Facebook’s changes and are keeping referral numbers high.My headphones are in, and I’m listening to Jóhann Jóhannsson’s The Miners’ Hymns — one of my favorite albums for coding. I’m finishing up an API for our new Heads Up Display (HUD), for which I’d worked out the math a few days earlier. I had spent the previous day figuring out how to implement the math and testing out edge cases with synthetic data, interspersed between product planning meetings and debugging a performance issue with a new component of the HUD backend. I’m about to put out a Pull Request, when I take a look at Nagios and notice that one of the systems that powers the current HUD has just gone critical. I start to debug, and a second later I get a Slack message from someone on Chartcorps saying that customers are starting to notice that the HUD is down. I see that it is a simple fix this time; I just have to restart one of services that powers the HUD.

Just in time, too, because I have to head uptown with members of our sales team to talk to one of our strategic clients about our new headline testing product. On my way out the door, one of our designers pulls me aside to look at the current designs for displaying the results of headline tests in the new HUD: “Does this viz accurately represent the data?” We talk for ten minutes, weighing pros and cons and looking at design alternatives. We talk about color schemes. We talk a bit about user interaction.The meeting uptown goes wonderfully; I give a high-level overview of multi-arm bandit headline testing, answer some technical questions about the product, and get great feedback about the product to take back to the team. When I get back in the office, I see a message from Lauryn Bennett, our Head of Brand, asking if any of us on the Data Science team have time to answer a request from a journalist about a news event that just happened. This particular request doesn’t require an in-depth statistical analysis, so I write a quick script to pull the numbers. I spend a bit of time looking at the results and then write up a few paragraphs describing what I’ve found. I then head into a meeting with fellow engineers, designers, and product owners to plan our next Sprint.**This is my typical day.**

Download now: Chartbeat Insider Guide: How to use Headline Testing to Hook and Hold Readers

## #DataScience

According to the Harvard Business Review, data science is the sexiest job of the 21st century. If you have data, you need a data scientist to get value from it; data scientists are the only ones who can wrangle #BigData into submission. Apparently, data science will save us all.

I’ve read many pieces over the past year trying to describe what data science actually is. There’s usually some talk about math and programming, machine learning, and A/B testing. Essentially these pieces boil down to one observation: data scientists do something with data. #DeepLearning anyone? I’ve followed arguments on Twitter and blogs about who should and should not be considered a data scientist. Is Data Science even a new discipline? How does it differ from Statistics? Programming? Or is it this…¯\_(ツ)_/¯Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician.

— Josh Wills (@josh_wills) May 3, 2012

**Ok, then, what the hell does a data scientist actually do?**Now

*this*is a question I can answer. And since I haven’t read many concise descriptions of what data scientists do day-to-day, I figured that I’d throw my hat into the ring and talk about the kind of data science we do here at Chartbeat.

“WARNING: it may be a bit different than what you might have heard that data scientists typically do for a living.”

## OK, so, what exactly do you do?

Our team here at Chartbeat are what I like to call **Product-Centered Data Scientists** — meaning the majority of things we do on a daily basis are in direct support of our products. Because we are a data company, our role is pretty central to the organization. Of course, we do math. We build data pipelines and write production code. We do all kinds of analyses. But we also work regularly with sales and marketing. We go on customer visits and help out with sales calls. We even participate in user research with our designers, UX, and product owners.

*Engineering*

As a tech company, we build software products. Plain and simple. As a data company, every one of those products has a data science need. Because of this, our team is embedded within the engineering team, and most of us take on heavy backend or front-end roles in putting code into production. We don’t just hand prototypes over to engineering for them to implement. We do the implementation. We tune our Redshift clusters, find API performance bottlenecks, choose the proper data structures. We are also part of the backend on-call rotation. If Chartbeat were to break at 2AM, we’d help fix it.

For example, just consider our Engaged Headline Testing tool. Andy Chen and Chris Breaux have been instrumental in designing, building, and maintaining the systems that power headline testing. Andy worked out the initial math for adding Engaged Time into the multi-arm bandit framework and was one of two people who built the initial backend. Chris Breaux has since taken over the Data Science role on the team and continues to push the math, and the product, to new places. The new features that will be released soon in that product are — in no uncertain terms —*data science*features.In fact, all of us play central roles to each of the products with which we are associated. Josh Schwartz and Justin Mazur have built an enormous portion of our Ads Suite, Kris Harbold and Josh have built all of Report Builder, and Kris holds the distinction of being our only team member to have both front-end and backend code in production. Justin and I have worked on our Video Dashboard, and I’ve built a lot of the HUD. Each of us has contributed countless lines of code to all sorts of systems across Chartbeat.

“I don’t think it is an exaggeration for me to say that there is not a part of Chartbeat code that a data scientist has not touched.”

*Math*

Okay, so we do math. This just comes with the territory. Sometimes sophisticated math, sometimes rote math. This math is either in direct support of a product or is part of an analysis we’re working on. We don’t do math every day, but when math is needed, we are there to answer the call.

*Research + Analysis*

Analysis is typically thought of as an essential skill of a data scientist, and we definitely do our fair share. These analyses range from customer specific reports to industry-wide analyses to analyses that inform a specific product build. Take, for example, the analysis Chris Breaux did on Dark Social traffic, or the countless studies Josh Schwartz, our Chief Data Scientist, has published on our blog and elsewhere. Or take, for instance, the research that Justin and Chris recently did towards updating our Engaged Time measurement methodology, the work Kris and I published on user journeys through websites, or the work Jeiran Jahani is doing to break new ground in topic detection. If there is a question that we can use our data to answer, we’ve likely been tasked with answering it. Sometimes our analyses take a few minutes; sometimes they take a few weeks. Sometimes we have to dig deep into our bag of tricks and pull out sophisticated statistical tools. Sometimes we write simple SQL queries to calculate averages.

*User Interviews + Ethnographic Research*

With our product designers and product managers, some of us on the data science team sit in on user interviews and do ethnographic research. This is not something that I’ve seen as common to data scientists at other organizations, but I think it is an incredibly important activity for a product data scientist to participate in.

I know a lot of data scientists and engineers who roll their eyes at this kind of stuff, but understanding user goals helps in the design of a data pipeline, the choice of an algorithm, or the decision for which metric is best for a given application. It makes you empathetic to your user base, which is never a useless endeavor. What product-centered data scientists do is try to keep in our heads at all times exactly what has to happen to create an amazing user experience.“From the ugly, messy data at the start of the pipeline, to the user’s interaction with the tool, the user is interacting with data, and that has to be in our purview.”

These interviews also give context for where you can be lax with assumptions, because you often have to make trade-offs when you try to implement your fancy models. Sometimes all that great math adds one second to the response time of an API, and when you have traffic like ours, sometimes you can’t afford one second. Knowing the fidelity that your users expect or require helps solve this problem.

When we were redesigning the HUD, I sat in a variety of newsrooms with one of our designers and watched editors work. We simply watched them use our product in their day-to-day flow, and asked questions now and again about what they were doing. I also sat in a few user interviews during this time and have since sat in on countless others. Those experiences have influenced the engineering and data design of the HUD, as well as several other products I’ve helped build.**And now, I can’t imagine being part of a product build without having done at least some user research.**

*Ideation + Future Products*

Product-centered data science is not all about maintaining current systems or developing feature increments. There is also a large amount of long-term vision thinking. What will our products look like next year? In the the next five years? Often, our team will prototype systems to test feasibility of an idea or a product direction. We comb through the latest data science papers and computer science literature to see if any of the latest findings can be applied to future (or current) products. Once every six weeks, we set aside a week for our entire team to do data specific projects that aren’t directly connected to current projects. We’ve built some cool stuff — a system that scrapes and searches content across our network, a tool that discovers popular stories in the news, a deep recurrent neural net to predict traffic, a Slackbot recommendation engine — you name it.

*Sales + Marketing*

Not only do we help design and build the products, but we do what we can to help sell them, too. We’ll often pull customer-specific numbers, industry benchmarks, or even do full-on reports for the sales team to use on on sales calls. Sometimes we’ll even sit in on those calls and other client visits. We write blog posts and our Data Science Quarterly, which help out the marketing team grow our customer base. We write product white papers. We give interviews to reporters. Basically, we are tasked with speaking to whomever on behalf of Chartbeat Data.

## Product-Centered Data Science

*This* is product-centered data science — at least here at Chartbeat. Personally, I think every product team should have a data scientist on it. **Data science is about storytelling, and so are product design, sales, and marketing.** There are so many intersections in thinking that it just seems natural for us to be involved in all these parts of the business. I might be in the minority, but for me, data science really has nothing to do with #BigData. It has nothing to do with machine learning. It might not have anything to do with statistics. It is about asking questions, developing user empathy, creating an experience, and telling a story. Our medium is data, our medium is code, but the outcome are fantastic product experiences.

We’re always looking for great storytellers: whether data scientists, account managers, or backend engineers. Come join us.

Many publishers would likely argue that the design of the website is as important for enticing readers to engage with the content as the content itself—humans, unfortunately, do judge books by their covers. *The Guardian*, *The Atlantic*, and *The Wall Street Journal* are just a few of the many publishers who have redesigned their websites this year.

*(Figure 1)*. The other most probable places for clicks are the locations of menus on left and right sides of the page. Nothing surprising here. As far as link sizes go, intuition holds as well: One would expect larger links—which likely represent headline articles—to drive greater traffic. This is certainly true. As a link’s area grows, generally so does the clicks per active visitor

*(Figure 2)*. Larger links correlate with higher click-throughs, but what about link density? For sites with a lot of closely packed links, does this dilute click-through rates? After all, there are only so many concurrent users to split across content. As a proxy for density, we looked at the median distance between links on a site. The data shows that CPVs decrease approximately linearly for links a distance of 450 pixels apart to about 2,000 pixels apart. Sites having more closely spaced links perform about two and a half times better than sites with distant links. It seems users prefer denser sites

*(Figure 3)*. These two pieces of evidence seem to contradict each other, though, because the distance between large links is necessarily large (assuming, of course, the links aren’t nested!). You might think, “Wait… if I have a lot of large links, I’ll have huge CPV, but they will be spaced far apart, so I’ll have a small CPV!” But, in reality, the data is only reflecting a common website design principle—a few large links interspersed with many smaller, closely spaced links.In fact, if you ponder these data long enough, it seems that we run into a chicken-and-egg problem. Click-throughs force a tautology. Design forces people to click in certain places, so they do. And we measure this. See why engagement matters?In any case, the data back up our intuition when it comes to determining how many people will click through to a given piece of content. Given a large enough dataset in which you know where a link is on a page, its height and width, how many people are on the page, and how many are currently engaged with content, you could likely obtain a reasonable prediction for the CPV. And perhaps using this knowledge, one might use such a model to guide the redesign of a website.We decided to try this (not the site redesign part, the modeling part!). Simple statistical models we have recently built can predict CPV for a link to within 0.007 clicks per min per active visitor for 92% of links. This might seem impressive, but to get a foundation for what this means, only four websites in the set we analyzed have a median CPV greater than this. There is much more work to do until we can really answer the question if design can predict attraction to and engagement with content, but the way forward is promising. Colors, font sizes, responsiveness—the design space is large. These can draw people in, but ultimately, it is the content that will keep people there.So, the next time you are thinking of undergoing an overhaul or redesign, stare closely at your Heads Up Display. Think about link size, link density, and ask yourself what you can do to draw people into that fabulous content.

A few months ago, I wrote about coin-flipping experiments, Bayesian updating, and spurious certainty. Much of the discussion in that post centered on using probability densities to reason about data, but I put off detailed discussion about densities until a future time (and I passed the buck in a footnote, no less!). Well, the time has come to right that injustice. Over at our Engineering Blog, I’ve written up a bit of a tutorial on distributions and some different ways to visualize them. So, if this is something you are curious and/or interested in, head over there to read it. Enjoy!

The story goes like this:

Sometime around 1935, the eminent statistician Ronald A. Fisher met a lady. The lady in question had a seemingly outrageous claim: She could tell,*simply by taste*, whether milk or tea was added to a cup first. But Fisher was skeptical, and, being the eminent statistician that he was, he developed a method by which to test her claim. He would present her with a series of eight cups; in half of those, milk would be placed in the cup first, and in the other half, tea would be placed in the cup first. Fisher would then hand the cups to the lady in random order and ask her which liquid was added first. If she performed better than chance, he’d believe her claim.Fisher’s description of this account was one of the first applications of hypothesis testing, perhaps the most widely used—and arguably one of the most important—statistical concepts of the modern era. That it was focused on a simple two-outcome choice is not surprising. Many processes we run into every day can be modeled in this way, as a coin flip. Will the subway show up on time? Will someone click the link to this article? Will the Detroit Tigers or the Kansas City Royals win this game?

^{1}These kind of problems—those in which you only have two outcomes—are known in statistics as Bernoulli processes. The main parameter governing these phenomena is the probability that a trial has succeeded. In Fisher’s example, this is the probability that the lady correctly identifies whether milk or tea is added first. For web traffic, this is the probability of clicking a link. In many of these types of two-outcome problems, you want to know how likely it is that you’ll observe some number of successes in a given number of trials. For example, you may be interested in the probability that 50 people will click on a link if 100 people see it. If you make an assumption that each event (i.e., each click) is independent of the previous event, the probability that you see some number of successes can be described by the binomial distribution. With a firm understanding of Bernoulli processes and the binomial distribution, you are equipped for modeling a whole host of binary-outcome problems.

## Is this a fair coin?

A binomial distribution, however, isn’t incredibly useful if we don’t know the probability of success for a single trial. Honestly, this is what we’re typically interested in finding out, and it is really what Fisher tested: He assumed the probability of a lady guessing whether milk or tea was added first was pure chance (50/50), and developed a test to see if the data were consistent with the results of the experiment. But, in general, how do we determine what this probability is?

There are two ways we can estimate the probability from a set of trials. We could simply count the number of successes we’ve had and divide by the total number of trials. For instance, if we flipped a coin 10 times and it came up heads 3 of those times, we might guess that the coin is an unfair coin, landing on its head only 30% of the time. This is all well and good, but we only flipped the coin 10 times. How certain are we that the probability is actually 0.3? Perhaps it truly*is*a fair coin and our sample size was just too small.Alternatively, we could assume that our probability of interest

*itself*has some distribution. That is, perhaps we think that the probability is about 0.3, but we concede that it could be 0.1 or 0.5 or even 0.99999. Treating our parameter as a distribution is the heart of a technique known as Bayesian inference, which is based upon Bayes rule: Don’t be intimidated by this equation—it is actually fairly intuitive. The left-hand side represents the answer to the question: Given the data we observed, how certain are we that our quantity-of-interest takes on a given value? This is called the

*posterior*distribution. The right-hand side contains information about what we believe about the process we’re interested in.

*Prob(quantity-of-interest)*is known as the

*prior*distribution. This describes our initial beliefs about the quantity we’re trying to find out about; in this case, our probability of success in the Bernoulli trial.

*Prob(observation | quantity-of-interest)*is called the

*likelihood*. The likelihood describes what we believe the distribution of the data to be if we assume our quantity is a specific value. In our click-through/coin-flipping example, this is simply the binomial distribution. If we know the fairness of the coin

*p*, then the probability we get M successes out of N flips follows a binomial distribution with parameters M and N. Then, a simple multiplication of our prior and our likelihood gives us our posterior.

^{2}The above equation may not seem very impressive, but the real power of the Bayesian method comes in when we iteratively apply the equation to update our beliefs. That is, we can use a previously calculated posterior as a prior in a next round of calculation to update our posterior. If we do this enough times, we hope to decrease our uncertainty enough so that we can confidently determine what our “true” probability is. The neat thing is that if we choose our prior intelligently, we can get the math to work out so that updates are fairly easy.That’s the math, but here is a concrete example. Consider an example website. Suppose we’re interested in the probability that a person will click on some link. If 10 visitors come to the page, and three of those people click on the link, we might guess that the click-through probability for that link is 3 /10 = 0.3 , but we wouldn’t be very certain; we only flipped the coin a small number of times. The far left panel on the figure below shows a prior we might build based on that uncertainty. It is peaked near 0.3, but is quite wide.

^{3}Now suppose that we’ve waited long enough for many, many visitors. The two subsequent panels show how the distribution evolves as we gather more data. When we’ve seen 1000 visitors, we are pretty darn certain that the click-through probability is somewhere very close to 0.3. Now imagine what happens when we’ve seen 10,000 visitors!

## The subtleties of assumption

Pretty amazing, right? If we gather data long enough, we can be incredibly certain about our click-through probability. In many cases, this is true. But let’s back up a bit.

In considering Bernoulli processes there is a fundamental underlying assumption that can often be overlooked. The assumption is this: The probability of success,*p*, is

*constant*from trial to trial. For most phenomena, this is a reasonable assumption. But what if it is not? If the probability varies from trial to trial and this

*isn’t*accounted for in our Bayesian updating, then we can end up becoming very certain about an incorrect probability. Consider the following example, where our probability varies smoothly between 0.3 and 0.6 over the course of 1,000 trials. What happens when we do Bayesian updating with the same assumptions as above? Not only does the peak of our posterior jump around wildly, depending on how many trials we do, but we start becoming incredibly certain that the probability is near the dead center of our varying probability function. I like to call this

*spurious certainty*. We have an inaccurate model and too much data! We have become too certain in our beliefs.This may seem like a contrived case, but in actuality, it is not. In fact, we’ve seen data here at Chartbeat to suggest that the probability to click on a link is time dependent. Take the figure below, which shows the average click probability for all links on an anonymous site’s homepage on a particular day. The probability shows a 70% decrease from the beginning of the day to around 2 p.m., and then back up. In order to accurately depict the click-through behavior of this site’s users, we have to take this variation into account to avoid spurious certainty.

## Using the data as a guide

How exactly can we take into consideration this time variation? We could add time directly into our Bayesian updates, but to get good data we might have to wait a long time. After all, in the general case we don’t really know what this variation looks like. Does our probability vary by time of day? Day of week? Month? Year? All of these? In reality, we probably don’t have enough time to gather enough data for our Bayesian updating to be very informative.

An alternative way is to forget about doing any sort of modeling and simply use measurements. In this method, we forget about priors and posteriors and likelihoods and just make a histogram of the data we’ve measured. We could, in effect,*build*an empirical form of the distributions from the figures above. Then we can update our beliefs by averaging the histogram of old data with the histogram of new data; we can even use a weighted average so anomalies will get “smoothed out.” We may not get a nice thin distribution, but at least we capture some of this temporal variation and we avoid spurious certainty. In fact, we’ve built our Heads Up Display, which measures click-through probabilities, to do exactly this.

## The Tao of Data

In my opinion, we—and by *we* I mean *humanity*—should be ever the skeptics. In data analysis, this is paramount. Like Fisher, we should question outrageous claims and find ways to test them. We should revisit old assumptions, test them, and revisit them again. The data will guide the way, but we should always beware of spurious certainty.

If you’d like to talk about his in more detail, perhaps over a cup of tea, contact me at dan@chartbeat or find me on Twitter.

^{1. The Tigers. Always bet on the Tigers.↩}

^{2. Ignoring, of course, the fraction’s denominator, but that is a bit out of the scope of this post… which is math speak for laziness.↩}

^{3. A note about how to read probability density functions if you are not familiar with them: Probability density functions (PDFs) are truly probability densities; that is, the area under the curve between two values on the x-axis gives the probability that our quantity-of-interest will be between those two points. That’s why the y-axis is so funny. To get the probability, we essentially need to multiply the y-axis value by distance between two values on the x-axis. If that doesn’t make any sense, just know that the best way to think about these distributions is to see where the curve is the most dense—where the greatest area under the curve is. So, the places where the peaks exist are the most probable values. I’ll blog more about distributions in the near future.↩}